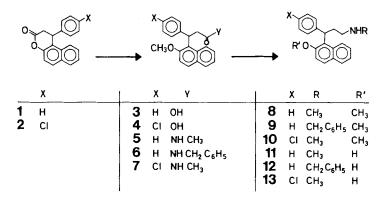
125. Heterocyclic Spiro-naphthalenones. Part I: Synthesis and Reactions of some Spiro [(1 *H*-naphthalenone)-1,3'piperidines]

by Daniel Berney and Karlheinz Schuh

Research Institute Wander (a Sandoz Research Unit), CH-3001 Berne (Switzerland)


(27.II.78)

Summary

The title compounds 14-16 were obtained via an intramolecular Mannich condensation by treating 11-13 with CH₂O at RT. The unsaturated ketones 14 and 15 were reduced to the allylic alcohols 18 and 19 respectively. Ring cleavage of compound 18 on treatment with 2N HCl gave the substituted aminopropanol 20. The allylic alcohols 18 and 19 were hydrogenated to 22 and 23 respectively. With CH₂O, the amino-alcohol 23 gave the methano-naphthoxazocine 24, whereas 22 and 23, on heating in polyphosphoric acid (PPA), afforded the naphthazepines 25 and 26 respectively. With organolithium compounds, the unsaturated ketones 14 and 16 gave the tertiary allylic alcohols 27-29, which were hydrogenated and dehydrated to the olefins 36-40; these were cyclized via an intramolecular alkylation to the methanodibenzo-octahydrocyclooctapyridines 41-43. On heating in PPA, the allylic alcohol 29 was converted into the naphthazepine 44. With CH₂O, the naphthol 49 gave the naphthoxazocine 50, in equilibrium with the spiro-naphthalene-pyrrolidinone 51 in solution. Finally, in the presence of CH_2O , the naphthazepine 57 afforded the methano-naphthazepinone 58, which, by a 4-stage degradation, was transformed to the benzisoquinoline 62.

Introduction. - Spiro[naphthalen-1]-2-ones can be regarded as 6-spiro-cyclohexa-2,4-dienones [1] fused at the C(4)-C(5) double bond with a benzene ring. Therefore they should possess greater stability and be more readily accessible than their parent 6-spiro-cyclohexa-2,4-dienones. To our knowledge only a few examples of spiro[naphthalen-1]-2-ones have been reported in the literature¹). We describe a very simple synthesis of some substituted spiro[1 *H*-naphthalenone)-1,3'-piperidines] (14, 15, 16) and the corresponding alcohols. Some aspects of their configuration and conformation are also presented. The alcohols, treated with acids, give rise to some interesting ring cleavages, rearrangements or cyclizations. A spiro[1*H*naphthalenone)-1,3'-pyrrolidine] (51) and a related bridged naphthalen-2-one (58) are also included in this study.

¹) For example [2] [3].

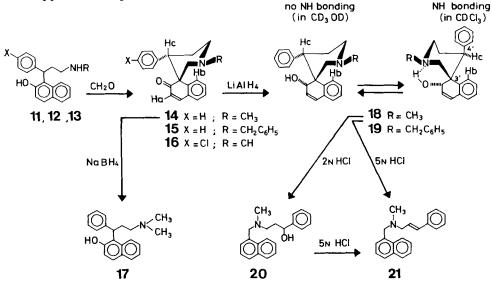
Results. – 2-Naphthol and cinnamic or *p*-chlorocinnamic acid heated in a mixture of H_2SO_4 and acetic acid, gave the lactones 1 [4] or 2. These were opened and methylated to give the carboxylic acids 3 [4] and 4. The corresponding acid chlorides were treated with primary amines to yield the propionamides 5, 6 and 7, reduced with LiAlH₄ to 8, 9 and 10. The resulting methoxy-naphthylpropylamines were demethylated with BBr₃, giving the 2-naphthols 11, 12 and 13.

The spiro-ketones 14, 15 and 16 were prepared by an intramolecular *Mannich* condensation which occurred almost instantaneously when the products 11, 12 and 13 were treated with aqueous formaldehyde in ethanol at RT. The IR. spectrum of 14 showed a carbonyl band at 1660 cm⁻¹; its NMR. spectrum taken in CDCl₃ exhibited a doublet at δ 5.85 ppm attributable to the proton H_a and a multiplet at 9.4 assigned to H_b which seemed to interact strongly with the lone electron pair of the nitrogen atom.

In protic solvents the spiro-compound 14 was apparently in equilibrium with its readily reducible *Schiff*-base precursor; it gave on treatment with NaBH₄/methanol or H₂/(Pd/C)/ethanol the naphthol 17 exclusively. When the reduction was performed with LiAlH₄/THF the allylic alcohol 18 was obtained along with a small amount of 17. Similarly, compound 15 was reduced with LiAlH₄/THF to give mainly 19.

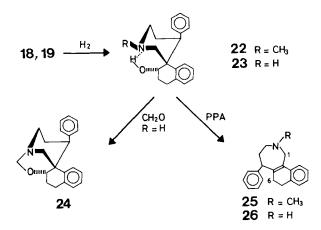
The presence of an intramolecular H-bridge between O and N in CH_2Cl_2 solutions of compound **18** was clearly demonstrated by a broad absorption in its IR. spectrum centered at 3150 cm⁻¹ and not affected by dilution. The NMR. spectrum of **18** in CDCl₃ showed a sharp triplet at 3.6 ppm attributed to the equatorial proton H_c . No such sharp triplet could be observed on the NMR. spectrum of **14**, owing to the axial position of H_c .

The signal for H_b in 18 could no longer be distinguished from the multiplet for the aromatic protons which appeared at *ca*. δ 7.5 ppm, thus confirming the flipping of the piperidine ring which was maintained in the less stable conformation (axial phenyl group) by the H-bridge. Flipping back of the piperidine ring could be observed when the formation of the H-bridge was prevented by acetylation of the OH group; the signal attributed to H_b appeared again at a much lower field (δ 9.3 ppm). A shift to 8.9 ppm was also observed for H_b when the spectrum of 18 was taken in CD₃OD which promoted the cleavage of the intramolecular H-bridge. A clear conclusion about the configuration at C(2) could not be drawn from NMR. spectroscopy. It was assumed that LiAlH₄ attacked the carbonyl group from the side which was not hindered by the equatorial phenyl group, thus giving the configuration indicated in formulae **18** and **19**²).


The spiro-compound 18 was readily cleaved to the aminomethyl-naphthalene 20 by mild aqueous acid treatment, or to its dehydrated form 21 under more strongly acid conditions³).

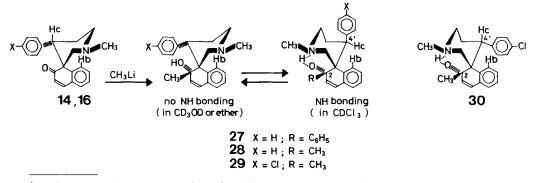
The allylic alcohols 18 and 19 were hydrogenated to give compounds 22 and 23 respectively which, treated with polyphosphoric acid (PPA), gave the naphthazepines 25 and 26 via a Wagner-Meerwein rearrangement. In the NMR. spectrum of 26 in C_6D_6 , protons at C(2) appeared as a slightly split singlet due to a homoallylic coupling with protons at C(6).

The amino-alcohol 23 was cyclized to 24 by treatment with formaldehyde.


The unsaturated ketone 14 reacted with phenyllithium to give the tertiary allylic alcohol 27, or with CH_3Li at -20° to give 28. Similarly the chlorinated spiroketone 16 reacted with CH_3Li to give 29. The configuration at C(2) of compounds 27, 28 and 29 could not be clearly deduced from NMR. data, but it was assumed that reagents such as LiAlH₄ selectively attacked the carbonyl group from the less hindered, side, thus forming the allylic alcohols 27, 28 and 29.

As reported for 18, compounds 27, 28 and 29 presented different conformations depending on the solvent ability to break the internal H-bridge. Both CD₃OD and ether shifted to δ 8.8 ppm the signal corresponding to H_b which appeared at *ca*. 7.5 ppm in CDCl₃.

²) The chloro-compound 16 was reduced with LiAlH₄ to the corresponding allylic alcohol which was submitted for X-ray crystal structure analysis. Its configuration was found to be identical with the postulated configuration of the allylic alcohols 18 and 19 [5].


³) Compound **21** was also prepared by *N*-alkylation of *N*-methyl-1-naphthylamine with cinnamyl bromide.

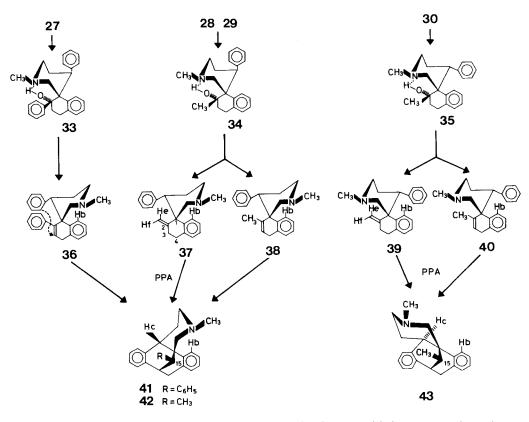
When CH_3Li was added to the chlorinated compound 16 in boiling ether a 3:1 mixture of products 29 and 30 was obtained.

The NMR. spectrum of the isomeric tertiary allylic alcohol 30 taken in $CDCl_3$ did not show the sharp triplet appearing on the spectrum of 29 and corresponding to the equatorial H_c . This fact indicated that C(4') isomerized to the more stable configuration with the chlorophenyl group in equatorial position⁴). Only a very small proportion of isomerization could be observed when the unchlorinated compound 14 was treated with CH_3Li in boiling ether. The isomerization of the phenyl ring to a more stable configuration can be explained by the abstraction of the benzylic proton H_c by the bases present in the reaction mixture. The much higher degree of isomerization which occurred with 16 is probably the result of a lower pK_a value of H_c caused by the inductive effect of the chlorine atom.

The allylic alcohols 27 and 28 were hydrogenated to 33 and 34. Under the same conditions chlorine was eliminated from 29 and 30 with the formation of 34 and 35. The alcohol 33 was dehydrated by means of $SOCl_2$ /pyridine to give the olefin 36. Under similar conditions the alcohol 34 gave a 1:1 mixture of the exocyclic 37 and the endocyclic olefins 38 unseparable by thin-layer chromatography (TLC.) or by crystallization. When $POCl_3$ was used, 37 was obtained as the main product and

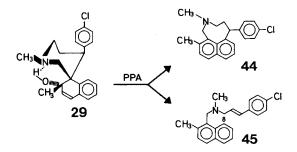
⁴) The configuration at C(2) of **30** was found by X-ray structure analysis to be identical to that of the reduction product of **16** [5] (see footnote 2).

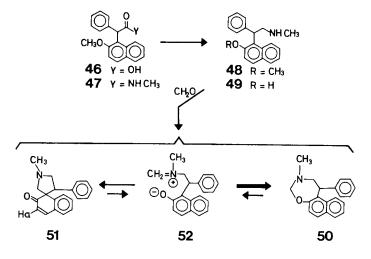
sufficiently pure to have a clear NMR. spectrum. When the alcohol 35 was treated with $SOCl_2$ /pyridine it gave a 1:1 mixture of the olefins 39 and 40 separable by TLC.

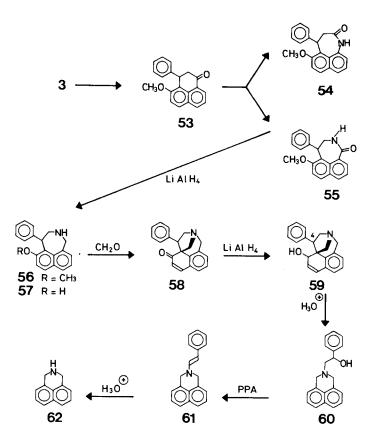

The flipping of the piperidine ring of the dehydrated products 36, 37 and 38 was due to the disappearance of the $N \cdots H-O$ intramolecular H-bridge formed in CDCl₃ solutions of **33** and **34** and to the greater stability of the new conformation in respect of the equatorial position of the phenyl ring. The inversion of the conformation was shown in the NMR. spectra of 36 and 37 and in the spectrum of 38 in mixture with 37 (in $CDCl_3$) by the presence of the characteristic low field signal of H_{b} at δ 9.4 ppm. The NMR. spectrum of 37 showed also a signal at 5.35 ppm corresponding to the 2 olefinic protons He and Hf; no C-methyl signal was present proving the exocyclic nature of the double bond. The phenyl ring of compound 30 being equatorial, the piperidine ring should retain its stable conformation through hydrogenation and dehydration to give 39 and 40. This assumption was supported by the NMR. spectra of 39 and 40 in CDCl₃ showing that H_b was not shifted by the influence of the nitrogen lone electron pair. In 39 the effect of the nitrogen was now directed on the proton H_e; its signal now appeared strongly shifted towards lower field (δ 6.5 ppm) compared with the signals of H_e and H_f both at 5.35 ppm in 37. By contrast, the chemical shift of H_f in 39 (5.2 ppm) was very similar to that of H_e and H_f (5.35 ppm) in 37.

The olefin 36 on treatment with PPA gave the pentacyclic compound 41. The exocyclic olefin 37 either alone or mixed with the endocyclic olefine 38 gave 42 as the sole product when heated in PPA. Finally, both olefins 39 and 40 gave 43 on treatment with PPA⁵). The NMR of these 3 cyclization products clearly showed the loss of one aromatic and all olefinic protons owing to the intramolecular alkylation of the phenyl group by the olefinic function. The presence of the H_b low-field NMR.-signal in both 41 and 42 (9.4 and 9.2 ppm) indicated that the N-H_b interaction was maintained; this signal was not present on the spectrum of 43. The C-methyl signal, absent in 37 and 39, appeared as a doublet at 1.5 and 1.15 ppm in the spectra of 42 and 43 respectively; this proves that the exocyclic double bond had migrated to the endocyclic position to give the isomers 38 and 40 prior the cyclization which occurred at C(3).

However a further migration of the double bond from C(2)-C(3) to C(3)-C(4) cannot be excluded as this could yield identical cyclized products. The absence of a signal corresponding to a diphenylmethane-like proton rules out the possibility of a cyclization at C(4). No firm conclusions could be drawn from the NMR. spectra concerning the C(15) configuration of 41, 42 and 43; this was thought, however, to be as shown in the *Scheme* with the new bond *cis* to the C(15) substituent, as expected in this type of cyclization.


Compound 29 on treatment with PPA gave the azocine 44. The NMR. spectrum of the crude product suggested the presence of a small amount of the cinnamylamine 45. No azocine was found when 18 was treated in a similar manner; here only the cinnamylamine 21 was obtained. The formation of 44 was probably due to


⁵) Compounds 41, 42 and 43 can be obtained more simply by treating the alcohols 33, 34 and 35 in PPA.



cyclization of the intermediate **45**. This cyclization would be expected to be facilitated by the 2-methyl group activating position 8 of the naphthalene nucleus.

The naphthylphenylacetic acid 46 [6] was converted to its chloride which reacted with methylamine to give the amide 47. This was reduced with B_2H_6 to 48 which was demethylated to the β -naphthol 49. The naphthol 49 cyclized to the oxazepine 50 with aqueous formaldehyde. Solutions of 50 exhibited a peculiar equilibrium with the spiro-compound 51, probably through the ionic intermediate 52. A Nujol mull of 50 showed no carbonyl band in the IR. spectrum, but when the spectra were taken in solvents a carbonyl band appeared. The amount of the tautomeric spiro-compound 51 was dependent on the solvent used. It was deter-

mined by measuring the intensity of the NMR. absorption due to proton H_a easily visible as a doublet at δ 5.6 ppm (H_a of 14 at 5.85 ppm). In CDCl₃, 50 and 51 were present in a 3:1 ratio; in C₆D₆ the ratio was 6:1. The transformation of 50 to 51 was reversible. For example, when the CDCl₃ solution was evaporated to dryness and the residue triturated with Nujol, the carbonyl band was no longer present in the IR. spectrum.

When the formation of an oxazepine of type 50 was prevented by keeping the amino function away from the phenolic group, *e.g.* in the naphthazepine 57, the stable 5-membered ring spiro compound 58 was formed. Compound 53 [4] was submitted to the *Schmidt* reaction giving a 3:2 mixture of 55 and 54. The lactam 55 was reduced to the cyclic amine 56 which was demethylated to 57. The bridged compound 58, obtained by treating 57 with aqueous formaldehyde, was reduced with LiAlH₄ to the allylic alcohol 59. No final conclusions could be drawn from spectroscopic data concerning the configuration of 58 and 59.

In analogy to the conversion by ring cleavage of 18 into 20, the allylic alcohol 59 was treated with $5 \times$ HCl to give the amino alcohol 60 which was dehydrated in PPA to the enamine 61. This enamine was hydrolysed to the known benz [d, e]iso-quinoline 62 [7].

I thank Th. Jauner for his excellent experimental assistance.

Experimental Part

General. - NMR. spectra were taken at 60 MHz in CDCl₃ unless otherwise stated, with TMS as an internal standard, using a *Varian* T-60 NMR. spectrometer. In the case of salts, a sample of the free base was prepared and used in CDCl₃. Abbreviations: s = singlet, d = doublet, t = triplet, m = multiplet, br. = broad; chemical shift in δ -values (ppm) coupling constants in Hz. - Analytical results obtained for the indicated elements were within $\pm 0.4\%$ of the theoretical values.

1-(4-Chlorophenyl)-benzo [f]chroman-3-one (2). Conc. sulfuric acid (120 ml) was added to stirred glacial acetic acid (280 ml) below 60°. *p*-Chlorocinnamic acid (123.9 g, 0.682 mol, *Fluka*) and β -naphthol (98.2 g, 0.682 mol) were added and the mixture was heated 1 h under reflux then cooled to *ca*. 20°. After addition of CHCl₃ (500 ml), the solution was poured into ice/water (3 l). The CHCl₃ layer was separated, washed with 2N Na₂CO₃, dried and evaporated. The residue was crystallized from ether/petr. ether, giving 44 g (20%) of 2, m.p. 98-100°. – Cl₁₉H₁₃ClO₂: C, H, N.

3-(4-Chlorophenyl)-3-(2-methoxy-1-naphthyl)-propanoic acid (4). The lactone 2 (77.8 g, 0.252 mol) was dissolved in boiling 10% NaOH (230 ml) with stirring. The solution was then cooled to 40° and dimethyl sulfate (23 ml) was added dropwise. The reaction mixture was heated for 3 min under reflux and cooled to 40°. Solid NaOH (11.5 g) and dimethyl sulfate (11.5 g) were added again, the solution was refluxed for a further 10 min, cooled to 20° and acidified with 5N HCl (200 ml). The acid 4 was extracted with CHCl₃ and the solution evaporated. The product crystallized from CHCl₃/ether giving 58.5 g (68%), m.p. 176-180°. - C₂₀H₁₇ClO₃: C, H, N.

Preparation of amides and lactams. - 3-(2-Methoxy-1-naphthyl)-N-methyl-3-phenylpropanamide (5). The acid 3 [4] (30.6 g, 0.1 mol) was suspended in toluene (100 ml), SOCl₂ (13.1 g, 0.11 mol) was added and the mixture stirred at 80 to 90° until the gas evolution ceased. After distilling off about 20 ml toluene under reduced pressure, the acid chloride solution was added dropwise to a stirred solution of methylamine (18 ml) in toluene (200 ml) between -5 and 0°. The reaction mixture was washed successively with H₂O, 1N NaOH, 1N HCl, H₂O and then dried and concentrated to a volume of about 100 ml. On cooling 28.0 g (87%) of 5 crystallized, m.p. 136-139°. - C₂₁H₂₁NO₂: C, H, N. The following 3 compounds were prepared in the same manner as compound 5.

N-Benzyl-3-(2-methoxy-1-naphthyl)-3-phenylpropionamide (6). From 3 [4] (68%), m.p. 113-115°. - $C_{27}H_{25}NO_2$: C, H, N.

3-(4-Chlorophenyl)-3-(2-methoxy-1-naphthyl)-N-methylpropionamide (7). From 4, the crude product (not crystalline) was used for the next step.

2-(2-Methoxy-1-naphthyl)-N-methyl-2-phenylacetamide (47). From 46 [5] (57%), m.p. 134-137°. - $C_{20}H_{19}NO_2$: C, H, N.

5-Methoxy-4-phenyl-1,2,3,4-tetrahydro-naphth [1,8-c,d]azepin-1-one (55). During the experiment the reaction flask was flushed with N₂ to avoid concentration of HN₃ (caution! explosion hazard). The ketone 53 [4] (19.2 g, 0.066 mol) was dissolved in methanesulfonic acid containing 10% P₂O₅ (altogether 192 g of solution), and NaN₃ (5.2 g, 0.08 mol) was added in small portions with stirring. The temperature was maintained between 17 and 25°. After the addition of NaN₃, stirring was continued for 3 h and the reaction was poured into ice/water (500 ml). The products were extracted with CHCl₃. The organic layer was dried and evaporated. The residue crystallized from CHCl₃/ether, giving a mixture containing 60% of 55 and 40% of 54. Pure lactam 55 (5.0 g, 24.7%) was isolated by fractional crystallization, m.p. 205–208°. – NMR:: 3.5 (m, 2 H–C(3)); 3.8 (s, CH₃O); 5.15 (d, H–C(4)); 6.4 (t, NH). – C₂₀H₁₇NO₂: C, H, N.

From the mother liquor 5-methoxy-4-phenyl-1,2,3,4-tetrahydro-naphth [1,8-b,c]azepin-2-one (54) was separated (2.5 g, 12%), m.p. 215-225°. NMR.: 3.2 (d, J = 4, 2 H-C(3)); 3.8 (s, CH₃O); 5.45 (t, J = 4, H-C(4)); 8.65 (br. s, NH). - C₂₀H₁₇NO₂: C, H, N.

Reduction of amides or lactams. – 3-(2-Methoxy-1-naphthyl)-N-methyl-3-phenylpropylamine (8). The amide 5 (12 g, 0.375 mol) was suspended in tetrahydrofuran (THF) (120 ml) and LiAlH₄ (3.4 g, 0.09 mol) was added. The reaction mixture was heated 1.5 h under reflux. The excess LiAlH₄ was destroyed by dropwise addition of a mixture of THF (90 ml) and H₂O (10 ml). The suspension was filtered and evaporated to dryness. The residue was crystallized from ether giving 8 g (70%) of 8, m.p. 97-102°. – C₂₁H₂₃NO; C, H, N. – Hydrochloride, m.p. 195-197°.

The following 4 products were prepared in the same manner as 8.

N-Benzyl-3-(2-methoxy-1-naphthyl)-3-phenylpropylamine (9) hydrochloride. From 6 (64%), m.p. $195-199^{\circ}$. – $C_{27}H_{28}CINO: C, H, N.$

3-(4-Chlorophenyl)-3-(2-methoxy-1-naphthyl)-N-methylpropylamine (10) naphthalene-1,5-disulfonate. From 7 (71,8%), m.p. 260-267°. – $C_{26}H_{26}ClNO_4S$: C, H, N. For the preparation of naphthalene-1,5-disulfonates see [8].

2-(2-Methoxy-1-naphthyl)-N-methyl-2-phenylethylamine (48) naphthalene-1, 5-disulfonate. From 47, reduced with B_2H_6 (59%), m.p. 195-196°. - $C_{25}H_{25}NO_4S$: C, H, N.

5-Methoxy-4-phenyl-1,2,3,4-tetrahydro-naphth[1,8-c,d]azepine (56) naphthalene-1,5-disulfonate. From 55 (73%), m.p. $304-306^{\circ}$. – $C_{25}H_{23}NO_4S$: C, H, N.

Cleavage of methoxynaphthalenes to naphthols. - 1-(3-Methylamino-1-phenylpropyl)-2-naphthol(11) hydrochloride. The amine 8 (30.5 g, 0.1 mol) dissolved in CH₂Cl₂ (300 ml) was cooled to 0-5° and a mixture of BBr₃ (50 g, 0.2 mol) in CH₂Cl₂ (500 ml) was added dropwise. After 20 min methanol (50 ml) was added cautiously and the solution was washed with 2N KHCO₃ (500 ml). The organic layer was dried and evaporated. The amine 11 was converted to its hydrochloride which crystallized from methanol/ether giving 20 g (61%) of product, m.p. 220-223°. - C₂₀H₂₂ClNO: C, H, N.

The following 4 compounds were prepared in the same manner as compound 11.

1-(3-Benzylamino-1-phenylpropyl)-2-naphthol (12) hydrochloride. From 9 (48%), m.p. 261-263°. - C26H26ClNO: C, H, N, Cl.

 $\label{eq:l-f3-Methylamino-1-(4-chlorophenyl)propyl]-2-naphthol~(13)~hydrochloride.~From~10~(80\%),~m.p.~245-251°.-C_{20}H_{21}Cl_2NO:~C,~H,~N.$

l-(2-Methylamino-l-phenylethyl)-2-naphthol (49). From 48 (67%), m.p. 138-145°. - $C_{19}H_{19}NO$: C, H, N.

4-Phenyl-1,2,3,4-tetrahydro-naphth [1,8-c,d]azepin-5-ol (57) hydrobromide. From 56 (83%), m.p. 262-272°. - C₁₉H₁₈BrNO: C, H, N.

Cyclizations to spiro-naphthalenones. - Spiro [(1 H-naphthalenone)-1, 3'-(trans-1'-methyl-4'-phenyl)piperidine] (14). The base of the naphthol 11, liberated from the hydrochloride (141.8 g, 0.433 mol) was dissolved in ethanol (430 ml), a 35% aqueous solution of CH₂O (80 g, 1 mol) was added and the reaction mixture was kept for 10 min at RT. Water (5 l) was added and the product was extracted with CHCl₃. The organic layer was dried, evaporated and the residue crystallized from hexane giving 115.6 g (88.4%) of 14, m.p. 96-98°. - NMR.: 2.35 (s, CH₃N); 5.85 (d, H-C(3)); 9.4 (d×d, H-C(8)). - IR.: strong 1660 cm⁻¹. - C₂₁H₂₁NO: C, H, N. The following 4 products were prepared in the same manner as compound 14.

Spiro[(1 H-naphthalenone)-1,3'-(trans-1'-benzyl-4'-phenyl)piperidine] (15). From 12 (89%), m.p. $109-111^{\circ}$. – $C_{27}H_{25}NO: C, H, N.$

Spiro [(1 H-naphthalenone)-1,3'-(trans-4'-(4-chlorophenyl)-1'-methyl)piperidine] (16). From 13 (86%), m.p. $112-116^{\circ}$. - $C_{21}H_{20}CINO: C, H, N, Cl.$

3-Methyl-1-phenyl-2,3,4,5-tetrahydro-naphth[1,2-f] [1,3]oxazepine (50) and its equilibrium with Spiro[(1 H-naphthalenone)-1,3'-(1'-methyl-4'-phenyl)pyrrolidine] (51) in solutions. From 49, 40% of pure crystalline 50, m.p. 98-99°. – IR. (Nujol): no carbonyl absorption; in methanol, C=O, 1660 cm⁻¹. – NMR.: Discussed in the text; ratio of 50 and 51 in CDCl₃ 2:1, in C₆D₆ 6:1. – C₂₀H₁₉NO: C, H, N.

4-Phenyl-2, 4a-methano-1, 2, 3, 4-tetrahydronaphth [1,8-c,d]azepin-5-one (58). From 57 (65%), m.p. 153-155°. - UV. (ethanol 95%): λ_{max} 245 nm (ε 6.900). - IR. (CHCl₃): 1660 cm⁻¹. - NMR.: 3.8 and 4.05 (2 d, J_{AB} = 10, 2 H-C(3)); 4.1 and 4.6 (2 d, J_{AB} = 18, 2 H-C(1)); 6.0 (d, H-C(6)). - C₂₀H₁₇NO: C, H, N.

Reduction of the spiro-naphthalenones. – $1-(3-Dimethylamino-1-phenylpropyl)-2-naphthol (17). The spiro-compound 14 (0.75 g, 2.5 mmol) was reduced with NaBH₄ (0.57 g, 15 mmol) in methanol at 10°. After the usual work-up the product was crystallized from CHCl₃/ether giving 0.7 g (91.7%) of 17, m.p. 150-158°. – NMR.: 2.3 (s, (CH₃)₂N); 5.1 (<math>d \times d$, J = 4 and 13, H–C(3')). – C₂₁H₂₃NO: C, H, N.

(1 RS, 2 SR, 4' SR)-Spiro [(1,2-dihydro-2-naphthol)-1,3'-(1'-methyl-4'-phenylpiperidine)] (18) hydrochloride. To a mixture of LiALH₄ (14.7 g, 0.387 mol) and THF (800 ml) the spiro compound 14 (40 g, 0.132 mol) was added portionwise and the suspension was stirred at RT. for 30 min. After the usual work-up the residual amine was converted to its hydrochloride giving 34.1 g (76%) of 18, m.p. 234-238°. - NMR.: 2.4 (s, CH₃N); 3.6 (t, J=6, H-C(4')); 4.75 ($d \times d$, J=2 and 3, H-C(2)); 5.8 ($d \times d$, J=2 and 10, 1 H olef.); 6.15 ($d \times d$, J=3 and 10, 1 H olef.). - C₂₁H₂₄CINO: C, H, Cl, N.

The following 2 compounds were prepared in the same manner as compound 18.

(1 RS, 2 SR, 4' SR)-Spiro [(1,2-dihydro-2-naphthol)-1,3'-(1'-benzyl-4'-phenylpiperidine)] (19) hydro-chloride. From 15 (86%), m.p. 218-224°. – $C_{27}H_{28}CINO: C, H, Cl, N.$

4-Phenyl-2, 4a-methano-1, 2, 3, 4, 4a, 5-hexahydro-naphth [1,8-c,d]azepin-5-ol (59) hydrochloride. From 58 (90%), m.p. 280-290° dec. NMR.: (DMSO-d₆): 4.65 (s, H-C(5)); 5.5 (s, H-C(6), H-C(7)). - $C_{20}H_{20}CINO: C, H, N.$

Reaction of alkyl or aryllithium with spiro-naphthalenones. – (1 RS, 2 SR, 4' SR)-Spiro[(2-methyl-1,2-dihydro-2-naphthol)-1,3'-(1'-methyl-4'-phenylpiperidine)] (28) hydrochloride. To a stirred solution of 14 (15 g, 0.05 mol) in ether (150 ml) at -20° , a 2M solution of CH₃Li in ether (75 ml, 0.15 mol, Fluka) was added dropwise. After the addition was complete, the reaction mixture was allowed to reach RT. Water (50 ml) was added cautiously and the etheral layer was separated, dried and evaporated. The product 28 was converted to its hydrochloride giving 13.6 g (76%), m.p. 265-267°. – NMR.: 1.2 (s, H₃C-C(2)); 2.4 (s, CH₃N); 3.75 (t, J=6, H-C(4')); 5.7 (d, J=10, 1 H, olef.); 6.0 (d, J=10, 1 H, olef.). – C₂₂H₂₆ClNO: C, H, N.

(1 RS, 2 SR, 4' SR)-Spiro [(2-methyl-1,2-dihydro-2-naphthol)-1,3'-(4'-chlorophenyl-1'-methylpiperidine] (29) hydrochloride. As above, but 14 was substituted by the chlorinated product 16 (54%), m.p. 250-255°. - NMR.: 1.2 (s, H₃C-C(2)); 2.4 (s, CH₃N); 3.7 (t, J = 6, H-C(4')); 5.6 (d, J = 10, 1 H, olef.); 5.95 (d, J = 10, 1 H, olef.). - C₂₂H₂₅Cl₂NO: C, H, N.

(1 RS, 2 SR, 4' RS)-Spiro [(2-methyl-1,2-dihydro-2-naphthol)-1,3'-(4'-chlorophenyl-1'-methylpiperidine)] (30). As for the preparation of 29, but carried out in refluxing ether. The allylic alcohols 29 and 30 were present in a 3:1 ratio; first 30 crystallized from ethanol (m.p. 175-181°). - NMR.: 1.2 (s, H₃C-C(2)); 2.4 (s, CH₃N); 5.4 (s, 2 H olef.); 6.0 (s, OH). - $C_{22}H_{24}CINO: C, H, N.$

The mother liquor was treated with HCl/ether and the main isomer 29 crystallized as HCl salt.

(1 RS, 2 SR, 4' SR)-Spiro[(2-phenyl-1,2-dihydro-2-naphthol)-1,3'-(1'-methyl-4'-phenylpiperidine)] (27). Prepared as 28, but using phenyllithium (Fluka) in place of methyllithium (71%), m.p. 129-132°. – $C_{27}H_{27}NO: C, H, N.$

Ring cleavage of the allylic alcohols. -3-[(1-Naphthylmethyl)-methylamino]-1-phenyl-1-propanol (20) hydrochloride. Compound 18 (15 g of the hydrochloride) was dissolved in 1N HCl (300 ml) and the mixture was heated for 2 h under reflux. After cooling, the solution was made alkaline with 30% NaOH. The product was extracted with CHCl₃ and the organic layer was dried and evaporated. The oily amine 20 was converted to its hydrochloride giving 5.6 g (37.3%), m.p. 156-158°. - NMR.: 2.3 (s, CH₃N); 3.9 (s, NCH₂Ar); 4.8 (t, J = 5, H-C(1)). - $C_{21}H_{24}CINO$: C, H, N. N-Methyl-N-(1-naphthylmethyl)-3-phenylprop-2-enamine (21) hydrochloride. A solution of the hydrochloride of amino-alcohol 20 (4 g) in 5N HCl was heated for 2 h under reflux working up as above (prep. of 20). The product was converted to its hydrochloride giving 3.6 g (95%), m.p. 173-175°. - NMR.: 2.25 (s, CH₃N); 3.3 (d, J=5, 2 H-C(1)); 3.95 (s, NCH₂Ar); 6.5 (m, H-C(2), H-C(3)). - C₂₁H₂₂ClN: C, H, N.

2-(2,5-Dihydro-1H-benz[d,e]isoquinolin-2-yl-1-phenylethanol (60) hydrochloride. From 59, as for the preparation of 20 but treated with 5n instead of 1n HCl, (85%), m.p. (dec.) 225-229°. - NMR.: 2.75 (split d, J = 6, 2 H-C(2); 4.0 and 4.3 (2 $d, J_{AB} = 16, 2 \text{ H}-\text{C}(1')$. 2 H-C(3')); 4.95 (split t, J = 6, H-C(1)). - C₂₀H₂₀ClNO: C, H, N.

2,5-Dihydro-1H-benz[d,e]isoquinoline (62). The hydrochloride of amino-alcohol 60 (200 mg) was dehydrated by heating in PPA (4 g) at 105° for 15 min. The mixture was poured into water and the solution boiled 15 min in order to hydrolyse the enamine 57, cooled and made alkaline with 10% NaOH. The product was extracted with CHCl₃. After the usual work-up the product was crystallized from hexane yielding 130 mg of 62, m.p. 100-105°. Lit [7] m.p. 105-106°. – $C_{12}H_{11}N$; C, H, N.

5-(4-Chlorophenyl)-2,11-dimethyl-2,3,4,5-tetrahydro-1H-naphth[1,8-c,d]azocine (44). The suspension of the hydrochloride of 29 (15 g) in PPA at 70° was kept 45 min between 80-90°. The solution was then poured into ice-water, made alkaline with 10% NaOH and extracted with CHCl₃. After the usual work-up 6.3 g (49%) of 44 were obtained, m.p. 146-152°. - NMR.: 2.5 and 2.6 (2 s, ArCH₃, NCH₃); 4.3 and 5.1 (2 d, J_{AB} = 14, 2 H-C(1)); 5.8 (d×d, J = 4 and 12, H-C(5)). - C₂₂H₂₂ClN: C, H, N.

Hydrogenation of the allylic alcohols. - (1 RS, 2 SR, 4' SR)-Spiro[(1,2,3,4-tetrahydro-2-naphthol)-1,3'-(1'-methyl-4'-phenylpiperidine)] (22) hydrochloride. The hydrochloride of the allylic alcohol 18 (7.0 g) was dissolved in ethanol (350 ml), 5% Pd/C (1.5 g) was added and the mixture was hydrogenated. After the usual work-up, 6.1 g (86%) of 22 hydrochloride crystallized from ethanol/ether, m.p. 245-251°. - NMR.: 2.35 (s, CH₃N); 3.45 (t, J = 6, H-C(4')); 4.0 (t, J = 8, H-C(2)); 7.6 (m, H-C(8)). -C₂₁H₂₆ClNO: C, H, N.

(1 RS, 2 SR, 4' SR)-Spiro [(1,2,3,4-tetrahydro-2-naphthol)-1,3'-(4'-phenylpiperidine)] (23) hydrochloride. The hydrochloride of compound 19 was hydrogenated as 18 but in glacial acetic acid instead of ethanol, (68%), m.p. 279-287°. – $C_{20}H_{24}CINO: C, H, Cl, N$.

(1 RS, 2 SR, 4' SR)-Spiro [(2-methyl-1,2,3,4-tetrahydro-2-naphthol)-1,3'-(1'-methyl-4'-phenylpiperidine)] (34) hydrochloride. Compound 28 was hydrogenated as 18 (88%), m.p. 270-272°. - NMR.: 1.2 (s, H₃C-C(2)); 2.35 (s, CH₃N); 3.5 (t, J=6, H-C(4)). - C₂₂H₂₈ClNO: C, H, N. This product could also be obtained by hydrogenation of the chloro compound 29, absorbing in this case 2 eq. of H₂ (38%).

(1 RS, 2 SR, 4' SR)-Spiro[(2-phenyl-1,2,3,4-tetrahydro-2-naphthol)-1,3'-(1'-methyl-4'-phenylpiperidine)] (33) hydrochloride. Compound 27 was hydrogenated analogously to 18 (95%), m.p. 195-205°. – $C_{27}H_{30}ClNO$: C, H, N.

(1 RS, 2 SR, 4' RS)-Spiro [(2-phenyl-1,2,3,4-tetrahydro-2-naphthol)-1,3'-(1'-methyl-4'-phenylpiperidine)] (35) hydrochloride. Compound 30 was hydrogenated analogously to 18. Two equivalents of H₂ were absorbed yielding 99% of 35 hydrochloride, m.p. 276-280°. - NMR.: 1.2 (s, H₃C-C(2)); 2.4 (s, CH₃N). - C₂₂H₂₈ClNO: C, H, N.

Reaction of the amino-tetrahydronaphthol 24 with formaldehyde. – (l RS, 4 SR, 6a RS, 12b SR)*l-Phenyl-4,12b-methano-1,2,3,4,6a,7,8,12b-octahydro-naphth[1,2-g]* [1,3]oxazocine (24). The aminoalcohol 23 prepared from its hydrochloride (7.5 g, 0.023 mol) was dissolved in ethanol (50 ml); a 35% CH₂O solution in H₂O (5 g, 0.059 mol) was added. The mixture was left 30 min at RT., diluted with water (250 ml) and extracted with CHCl₃. The evaporation residue was crystallized from hexane giving 5.5 g (78.5%) of 23, m.p. 114-116°. – NMR.: 4.7 (s, 2 H, OCH₂N). – C₂₁H₂₃NO: C, H, N.

Dehydration of tetrahydronaphthols. - 2-Methyl-5-phenyl-1,2,3,4,6,7-hexahydro-5H-naphth[1,2-c]azepine (25) naphthalene-1,5-disulfonate. The hydrochloride of 22 (16 g) was suspended in PPA (160 g, Fluka) and the mixture was heated 2 min at 100°. The reaction mixture was poured into H₂O, made alkaline and then extracted with CHCl₃. The evaporation residue was treated with naphthalene-1,5-disulfonic acid (NDS) [8] giving 6.4 g (30%) of NDS salt, m.p. 311-313°, crystallized from dimethylformamide/H₂O/ether. - $C_{26}H_{27}NO_3S$: C, H, N.

Was prepared (as 25): 5-Phenyl-2,3,4,6,7-hexahydro-5H-naphth[1,2-c]azepine (26) hydrochloride. From the hydrochloride of 23 (38%), m.p. 232-238°. NMR. (C₆D₆): 1.35 (s, HN); 2.35 (split t, J = 6, 2 H-C (6)); 2.9 (t, J = 6, 2 H-C(7)); 3.15 (split s, 2 H-C(1)); 4.25 (t, J = 9, H-C(5)). - C₂₀H₂₂CIN: C, H, N. Spiro [(2-phenyl-1, 4-dihydronaphthalene)-1, 3'-(cis-1'-methyl-4'-phenylpiperidine)] (36) hydrogenmaleate. The benzyl alcohol 33 (15.6 g) was dissolved in pyridine (150 ml), and SOCl₂ (11 ml) was added dropwise at RT. After the addition the reaction mixture was stirred for 15 min and poured into ice/water. The product was extracted with CHCl₃ which was washed thoroughly with H₂O, dried and evaporated. The product 36 was isolated by means of its hydrogen-maleate which was recrystallized 3 times from ethanol/ether giving 2.45 g (12%), m.p. 165-167. - NMR.: 2.15 (s, CH₃N); 5.7 ($d \times d$, J=2 and 6, H-C(3)); 9.4 (m, H-C(8)). - C₃₁H₃₁O₄N: C, H, N.

Spiro [(2-methylidene-1,2,3,4-tetrahydronaphthalene)-1,3'-(cis-1'-methyl-4'-phenylpiperidine)] (37) and spiro [(2-methyl-1,4-dihydronaphthalene)-1,3'-(cis-1'-dimethyl-4'-phenylpiperidine)] (38). Prepared from the alcohol 34 under conditions similar to those used for the preparation of 36. The reaction gave a 1:1 mixture of 37 and 38 as hydrochlorides, (36%), m.p. 215-245°. The compounds were not separated. When the reaction was carried out in refluxing POCl₃ (20 min) instead of SOCl₂/pyridine at RT., 37 and 38 were obtained in a 6:1 mixture. The NMR. spectrum is discussed in the text.

Spiro [(2-methylidene-1,2,3,4-tetrahydronaphthalene)-1,3'-(trans-1'-methyl-4'-phenylpiperidine)] (39) and spiro [(2-methyl-1,4-dihydronaphthalene)-1,3'-(trans-1'-methyl-4'-phenylpiperidine)] (40) hydrochlorides. Conditions similar to those used for the preparation of 36. The alcohol 35 gave a 1:1 mixture of 39 and 40 hydrochlorides (45%), m.p. 210-230°. Oily free bases were separated by preparative TLC. (1 mm Silica gel, ethanol/CHCl₃/heptane, 6:35:65; $R_f = 0.75$ and 0.70). The NMR. is discussed in the text.

(4a SR, 9 SR, 14b SR, 15 SR)-2,3,4,4a,9,10-Hexahydro-2,15-dimethyl-1H-9,14b-methanodibenz-[3,4:7,8]-cycloocten[1,2-c]pyridine (42). The hydrochloride of compound 34 (12 g) was suspended in PPA (120 g) and heated 45 min between 80-90°. The reaction mixture was poured into ice/water, made alkaline with 10% NaOH and extracted with CHCl₃. The extract was dried and evaporated. The residue crystallized from CHCl₃/ether giving 7.6 g (67%) of 42, m.p. 156-158°. - NMR.: 1.15 (d, J=7, H₃C-C(15)); 2.3 (s, CH₃N); 9.3 (m, H-C(14)). - C₂₂H₂₅N: C, H, N.

Compound 42 was similarly prepared from the olefin 37 or 38.

(4a RS, 9 SR, 14b SR, 15 SR)-2,15-Dimethyl-9,14b-methano-dibenzo[f,j]-1,2,3,4,4a,9,10,14b-octahydrocycloocta[1,2-c]pyridine (43) hydrochloride. Prepared as 42. From 35 (73%), m.p. 252-260°. – NMR.: 1.5 (d, $J = 7, H_3C-C(15)$); 2.3 (s, CH₃N); 7.7 (m, H-C(14)).

Compound 43 was similarly prepared from the mixture of 39 and 40.

(4a RS, 9 SR, 14b SR, 15 SR)-2-Methyl-15-phenyl-9,14b-methano-dibenzo[f,j]-1,2,3,4,4a,9,10,14boctahydrocycloocta[1,2-c]pyridine (41) hydrochloride. Experimental conditions were similar to those used for the preparation of 42. From 36 (42%), m.p. 233-253°. - NMR.: 9.4 (m, H-C(14)). - $C_{27}H_{27}N$: C, H, N.

Compound 41 was similarly prepared from 33 in comparable yields.

REFERENCES

- [1] R.S. Ward, Chemistry in Britain 1973, 444.
- [2] C.S. McClement & S. Smiles, J. chem. Soc. 1937, 1016.
- [3] E.A. Shearing & S. Smiles, J. chem. Soc. 1937, 1931.
- [4] C.F. Koelsch, J. Amer. chem. Soc. 58, 1326 (1936).
- [5] H.P. Weber & T.J. Petcher, unpublished results.
- [6] R.D. Tanz, S. African pat. 6804622, Chem. Abstr. 71, 91156 (1969).
- [7] L.A. Carpino, J. Amer. chem. Soc. 85, 2144 (1963).
- [8] D. Berney & K. Schuh, Helv. 58, 2228 (1975).